From 1 - 6 / 6
  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.

  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.

  • <div>Previous work by the SA government and CSIRO[i] highlighted the value of integrating AEM data with other geological and hydrogeological data to model palaeovalley groundwater systems and develop regional hydrogeological conceptualisations. This allows better-informed water supply decisions and management for communities in remote parts of Australia where these systems provide the only available and long-term water resource. The Exploring for the Future Musgrave Palaeovalley module seeks to apply similar work flows across the western Musgrave Province and adjacent Officer and Canning basins.</div><div>Open file mineral exploration AEM data from 11 surveys in WA and SA flown between 2009 and 2012 were re-processed and inverted to produce conductivity models and a suite of derived datasets. Geoscience Australia’s Layered-Earth-Inversion was used as a single standard processing and inversion method to improve continuity and data quality.</div><div>These legacy AEM data, originally for mineral exploration, have been incorporated with DEM-derived landscape attributes, previous palaeovalley mapping and available bore lithologies to model palaeovalley base surfaces. This presentation will provide an example from four blocks of AEM data to show how repurposing data from mineral exploration, public bore data and landscape analysis can be used to identify palaeovalley systems which provide critical water supplies for remote and regional communities and industry[ii].</div><div>This approach can be used to model palaeovalley systems from a range of geoscientific and other datasets. The Exploring for the Future Musgrave Palaeovalley module has acquired ~23,000 line km of AEM across parts of WA and the NT at line spacings of 1 and 5 km. This new precompetitive data will be used to model palaeovalley system geometry and integrate with new and existing AEM, drilling, landscape, groundwater chemistry and surface geophysics data to test hydrogeological conceptualisations of these groundwater systems.</div><div><br></div><div><br></div><div> [i] Costar, A., Love, A., Krapf, C., Keppel, M., Munday, T., Inverarity, K., Wallis, I. &&nbsp;Sørensen, C. (2019). Hidden water in remote areas – using innovative exploration to uncover the past in the Anangu Pitjantjatjara Yankunytjatjara Lands. MESA Journal 90(2), 23 - 35 pp.</div><div>Krapf, C., Costar, A., Stoian, L., Keppel, M., Gordon, G., Inverarity, K., Love, A. &&nbsp;Munday, T. (2019). A sniff of the ocean in the Miocene at the foothills of the Musgrave Ranges - unravelling the evolution of the Lindsay East Palaeovalley. MESA Journal 90(2), 4 - 22 pp.</div><div>Krapf, C. B. E., Costar, A., Munday, T., Irvine, J. A. & Ibrahimi, T., 2020. Palaeovalley map of the Anangu Pitjantjatjara Yankunytjatjara Lands (1st edition), 1:500 000 scale. Goyder Institute for Water Research, Geological Survey of South Australia, CSIRO.</div><div>https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042122. </div><div>Munday, T., Taylor, A., Raiber, M., Sørensen, C., Peeters, L. J. M., Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N., Martinez, J., Ibrahimi, T. &&nbsp;Gilfedder, M., 2020a. Integrated regional hydrogeophysical conceptualisation of the Musgrave Province, South Australia, Goyder Institute for Water Research Technical Report Series 20/04, Goyder Institute for Water Research, Adelaide.</div><div>Munday, T., Gilfedder, M., Costar, A., Blaikie, T., Cahill, K., Cui, T., Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gordon, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, Sreekanth, Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Macnae, J., Mariethoz, G., Martinez, J., Pagendam, D., Peeters, L., Pickett, T., Robinson, N., Siade, A., Smolanko, N., Sorensen, C., Stoian, L., Taylor, A., Visser, G., Wallis, I. &&nbsp;Xie, Y., 2020b. Facilitating Long-term Outback Water Solutions (G-Flows Stage 3): Final Summary Report. Goyder Institute for Water Research, Adelaide, http://hdl.handle.net/102.100.100/376125?index=1. </div><div>[ii] Symington, N. J., Ley-Cooper, Y. A. &&nbsp;Smith, M. L., 2022. West Musgrave AEM conductivity models and data release. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/146278.&nbsp;</div> This Abstract was submitted/presented to the 2022 Sub 22 Conference 28-30 November (http://sub22.w.tas.currinda.com/)

  • <div>Reliable water availability is critical to supporting communities and industries such as mining, agriculture and tourism. In remote and arid areas such as in the Officer – Musgrave region of central Australia, groundwater is the only viable source of water for human and environmental use. Groundwater systems in remote regions such as the Musgrave Province are poorly understood due to sparse geoscientific data and few detailed scientific investigations. The Musgrave palaeovalley module will improve palaeovalley groundwater system understanding in the Musgrave Province and adjacent basins to identify potential water sources for communities in the region. This report summarises the state of knowledge for the region on the landscape, population, water use, geology and groundwater systems. An analysis of the current and potential future water needs under different development scenarios captures information on how water is used in an area covering three jurisdictions and several potentially competing land uses.</div><div>The Musgrave Palaeovalley study area is generally flat, low-lying desert country. The Musgrave, Petermann, Mann and Warburton ranges in the centre of the area are a significant change in elevation and surface materials, comprising rocky hills, slopes and mountains with up to 800&nbsp;m of relief above the sand plains. Vegetation is generally bare or sparse, with isolated pockets of grassy or woody shrub lands. Soils are typically Tenosols, Rudosols and Kandosols.</div><div><br></div><div>There are four main hydrogeological systems in the study area. These are the fractured and basement rocks, local Quaternary sediments regional sedimentary basins and palaeovalley aquifers. These systems are likely to be hydraulically connected. Within palaeovalleys, three main hydrostratigraphic units occur. The upper Garford Formation is a sandy unconfined aquifer with a clay rich base (lower Garford Formation) which acts as a partial aquitard where present. The Pidinga Formation represents a coarser sandy or gravelly channel base, which is partly confined by the lower Garford Formation aquitard. The aquifers are likely to be hydraulically connected on a regional scale. Further to the west, equivalent units are identified and named in palaeovalley systems on the Yilgarn Craton. </div><div><br></div><div>Groundwater is recharged by episodic, high-intensity rainfall events and mostly discharges via evapotranspiration. Recharge is higher around the ranges, and lower over the flatter sand plains. Palaeovalley aquifers likely receive some groundwater inflow from underlying basin systems and fractured rock systems. Regional groundwater movement is topographically controlled, moving from the ranges towards surrounding areas of lower elevation. In some palaeovalleys groundwater discharges at playa lakes. Water table gradients are very low. More groundwater isotope and tracer data is required to understand potential connectivity between basin, fractured rock and palaeovalley systems.</div><div>Groundwater quality is brackish to saline, although pockets of fresher groundwater occur close to recharge areas and within the deeper and coarse-grained Garford Formation. Groundwater resources generally require treatment prior to use Most groundwater in the region is suitable for stock use. </div><div><br></div><div>Existing palaeovalley mapping is restricted to inferring extents based on landscape position and mapped surface materials. Utilising higher resolution digital elevation models and more recently acquired remotely sensed data will refine mapped palaeovalley extents. Improving the modelling of the distribution and depth of palaeovalleys in greater detail across the region is best aided through interpretation of airborne electromagnetic (AEM) data.</div><div>Based on the successes of integrating AEM with other geoscientific data in South Australia, we have acquired 25,109 line km of new AEM across the WA and NT parts of our study area. We will integrate this data with reprocessed and inverted publicly available AEM data, existing borehole information, existing and newly acquired hydrochemical data, and new surface magnetic resonance data to model the three dimensional distribution of palaeovalleys in the study area. We will use these models and data as the basis for conceptualising the hydrogeology of the palaeovalley systems, and provide information back to local communities and decision-makers to inform water management decisions. The data will also provide valuable precompetitive information for future economic development in the region.</div><div><br></div>

  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.

  • This data release includes SPECTREM® AEM data from eleven airborne electromagnetic (AEM) surveys in Western Australia, originally flown for Anglo American Exploration (Australia) Pty Ltd in 2009, 2011 and 2012 and a survey flown in South Australia for Metex Nickel Pty Ltd in 2012. Data for each survey are open-file and were downloaded from the Government of Western Australia, Department of Mines, Industry Regulation and Safety and Government of South Australia, Department of Energy and Mining. AEM data were re-processed and re-inverted to produce conductivity models and a suit of derived datasets using Geoscience Australia Layered-Earth-Inversion as a single standard processing and inversion method to improve continuity and data quality. This data release includes visualisation products including conductivity sections, grids, s-grids, georeferenced sections and earth-sci sections.